Dynamical formation of stable irregular transients in discontinuous map systems.

نویسندگان

  • Hailin Zou
  • Shuguang Guan
  • C-H Lai
چکیده

Stable chaos refers to the long irregular transients, with a negative largest Lyapunov exponent, which is usually observed in certain high-dimensional dynamical systems. The mechanism underlying this phenomenon has not been well studied so far. In this paper, we investigate the dynamical formation of stable irregular transients in coupled discontinuous map systems. Interestingly, it is found that the transient dynamics has a hidden pattern in the phase space: it repeatedly approaches a basin boundary and then jumps from the boundary to a remote region in the phase space. This pattern can be clearly visualized by measuring the distance sequences between the trajectory and the basin boundary. The dynamical formation of stable chaos originates from the intersection points of the discontinuous boundaries and their images. We carry out numerical experiments to verify this mechanism.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method

Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...

متن کامل

LI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS

‎In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$‎ ‎for finite discrete $X$ with at least two elements‎, ‎infinite countable set $Gamma$ and‎ ‎arbitrary map $varphi:GammatoGamma$‎, ‎the following statements are equivalent‎: ‎ - the dynamical system $(X^Gamma,sigma_varphi)$ is‎ Li-Yorke chaotic;‎ - the dynamical system $(X^Gamma,sigma_varphi)$ has‎ an scr...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

ar X iv : 1 30 8 . 33 63 v 1 [ q - bi o . N C ] 1 5 A ug 2 01 3 How Chaotic is the Balanced State ?

Large sparse circuits of spiking neurons exhibit a balanced state of highly irregular activity under a wide range of conditions. It occurs likewise in sparsely connected random networks that receive excitatory external inputs and recurrent inhibition as well as in networks with mixed recurrent inhibition and excitation. Here we analytically investigate this irregular dynamics in finite networks...

متن کامل

The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion

In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 80 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2009